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Abstract:

A numerical technique for the computation of power transfer and the
attenuation constants of waveguides with arbitrary cross section is studied.
The wave function, solution of the scalar Helmholtz wave equation, is
obtained for the ideal waveguide with perfectly conducting walls by the
point-matching method. Using the conventional assumption that the field
inside the waveguide with walls of finite but large conductivity is practically
the same as that in the ideal waveguide, the power transfer and the attenuation
constant are formulated. Numerical values are obtained for the TE]0 mode of

the square waveguide to demonstrate the accuracy of the method.

~
8
= (ACCESSION NUMBER) (THRU)
o
£ y?.g W
Y
: W
E ] {PAGES) (CODE)
: CLLGL)T
<
1
(tNASA CR CR TIOIX OR AD NUMBER) (CATEGORY)

This research work was supported by the National Aeronautics and

Space Administration partially funded under NsG-381.



1. Introduction

In the investigation of electromagnetic wave propagation in practical
waveguides, the ideal guides with perfectly conducting walls of the same
geometrical configuration are usually considered first. The field disiributions
and the cutoff wave numbers are approximately the same for both guides if the
practical guide walls are made of good conductors. It is reasonable to approxi-
mate the power transfer and the current flow for the practical case by those of
the ideal solutions, and therefore, the aftenuation constant can be estimated.

When the waveguides under consideration have arbitrary cross sections,
non-separability of the wave equations in the cross-sectional coordinate systems
is encountered., Approximate techniques for solving such problems have been
investigated by several authors [ Cohn, 1947; Yashkin, 1958; Meinke et al.,
1963; Tischer and Yee, 1964] to overcome this difficulty. Recently, the
point-matching method has been applied to calculate the cutoff frequencies
of the waveguides [ Yee and Audeh, 1965] . It is c-fechnique by which the
wave function satisfies the boundary conditions at a finite number of points.

In practical considerations, waveguides are made of good conducting
material with finite conductivity. The power dissipated in the guide walls is,
therefore, of considerable importance at frequencies in the microwave region
or higher. The purpose of this paper is to calculate the power transfer and the
attenuation constants of waveguides with arbitrary cross sections by the point-
matching method.

A square waveguide is considered as an example to test the theory
present here. The field distribution is obtained and compared with the exact
solution, and the agreement is excellent. The power transmitted in the guide
is also calculated with three-place accuracy. The general attenuation constants
for TE and TM modes are formulated and verified by calculating the attenuation
constant of a square waveguide operating in the TEiO mode and the results agree

very well with the ideal solutions.




2. The Point-Matching Solution of the Wave Equation

Consider the air-filled hollow-piped uniform waveguide with a coordinate
system as indicated in Fig. 1(a@). The cross section of the guide is assumed within
the applicability of the point-matching method. Let the electromagnetic wave
propagate in the z-direction with a time-harmonic dependence lexp (jut)]. As
shown by the authors | Yee and Audeh, 1965], the wave function, solution of the
scalar Helmholtz wave equation, is conveniently expressed as a series expression
in terms of the circular cylindrical modes. If the series converges uniformly and
rapidly, the wave function may be approximately written as

N
=7 (An cos nfl 4 B sin nB) Jn(kr) (1)
n=o0
where r and 0 are the polar coordinates, Jn is the nth order Bessel's function
of the first kind, N is an integer depending on the desired accuracy, An and
Bn are expansion constants to be determined by the boundary conditions. The
wave number k, the eigenvalue of the present boundary value problem, is

related to the propagation constant kZ as

2= 2o ?
o] Z
where k 2 :wzp €
(@] o 0
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M and € are the constitutive parameters of air. The quantity }\g is the guide
wavelength. Conventionally, the wave function § = H, for TE (transverse
electric) modes, and = EZ for TM (transverse mcxgneﬁcf modes. The wave
function ¥ then must satisfy either Dirichlet or Neumann boundary conditions

for ideal waveguides.



In applying the point~matching method, the boundary conditions men-
tioned above are imposed at only (2N + 1) properly chosen points around the cross
sectional contour of the waveguide, These boundary conditions are automatically
satisfied approximately elsewhere ot the surface. Let the points (ro , 90), (r] , 8]),
r5 s 62), ceees (r2N ' BZN) be a set of chosen points around the cross section. A
system of (2N + 1) homogeneous linear algebraic equations of the expansion

coefficients is obtained from (1) and the proper boundary conditions at these points.
That is,
N
+B si =
b} (An cos nem Bn sin nem) J (krm) 0 (2)

n=o0

for TM wave modes, and

N
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n=o

for TE wave modes, where m =0, 1, 2 .... 2N, and o is the angle between
the radial unit vector and the unit vector normal to the cross-sectional contour

at point (rm , Gm) as shown in Fig. 1({b).



To obtain non-trivial solutions for the expansion coefficients A_ and
Bn , the determinant of these coefficients must be zero. The cutoff wave
numbers are then readily determined. There are a denumerably infinite number
of values of k possible, each of which represents the cutoff wave number of
a particular wave mode. Corresponding to each value of k, the expansion co-
efficients An and Bn of (1) can be obtained. This is dore by setting one of
the coefficients equal to unity and solving the system of 2N inhomogeneous
linear equations for the remaining coefficients. The choice of the 2N equations
in either (2) or (3) is arbitrary. The wave function is then fully determined for
each wave mode. With the knowledge of the wave function the fransverse

field components can be computed by | Plonsey and Collin, 1961]
— i 2 _
E, = (|kz/k - v E + (mpo/kz) z x (Y, HZ)] (4)
— ) ) -
Fy = (-ik, /K0 Lwe_/k ) T x (9, E,) + 9, H_] )

where z is the unit vector in the z~direction, and A is the transverse gradient

operator. The above procedure describes the field inside the waveguide completely.



3. Power Transfer and Attenuation Constant

The field distribution inside practical waveguides made of good
conductors can be approximated by that of the corresponding ideal waveguide.

Hence, the power transfer is given by
- — ——
Pr=(1/2) f¢ Re LEt xH «z]dS (6)

where S is the cross-sectional area of the waveguide, (*) denotes the operation
of taking the complex conjugate. The transverse components of the field, Ef
and Ht are described by (4) and (5) with the point-matching solution of (1).
Combining (4) through (6) for each of TE modes and TM modes, yields

Pr =G/ £ 15, 417 ds @)
S
where G=(/2 Zo) (f/ fc)ZC for TM modes
G = (Zo/2) (f/Fc)2 ¢ for TE modes

i

\]1 -(fc/F)z

and Zo = Ju /eo , is the intrinsic impedance of free space. The quantities fc
)

t

and f are the cutoff and operating frequencies respectively. By using Gauss

theorem [Ramo and Whinnery, 19587 (7) can be further reduced to
P.=G/ |v]2ds (8)
T S

Evaluation of the integral in (7) or (8) may be occomplisheci by numerical techniques.



Since the conductivity of the guide walls is finite in practical application,
part of the transmitted power will dissipate in the walls, The power loss per unit

length of the guide is conventionally estimated by
Po=®/2/ |H_|2dt (9)
L s c tan

where Rs =J(I)Il;m/_-2-;, is the surface resistance of the guide wall, o is the
conductivity of the conducting material. The path, C, of the line integral is
the contour of the cross section. The integrand in (9) is the square of the magni-
tude of the magnetic field component fangential to the periphery of the ideal

guide walls, Since the normal component of the transverse magnetic field Ht

automatically vanishes at the guide surface, it is then possible fo express

chn for TM wave modes as follows:

iH (10)

tan
where ror @ function of 8, describes the cross-sectional contour. For TE
wave modes however, the longitudinal component of the magnetic field also
contributes to the tangential componeni. Hence,

‘2

|H
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From (5), the square of the magnitude of the transverse magnetic field, therefore,

may be written as

I-l--—l,r ‘2 = (f/fc)2 F(r, 9) for TM modes | (12)

and "
|'|3|f|2 = (Ft/F k) Fle s ©) . for TE modes (13)

2 2

where F(r, 6) = (___é___éllr > + (—-:— —%éi)



The attenuation constant is conventionally defined by

on=PL/2 Py (14)

if the guide walls are made of good conducting material. Combining (8)

through (14) yields the following attenuation constants:

a=®/2Z, Cszs‘ lv]2 as)§ F(r, s O)r de (15)
C

for TM wave modes, and

a=R/2Z,¢ [ |v|? dS)[(t/k)Z/ F(r_, 8)r_do

¢ (16)

2 2
+(fc/f)fc [, 8) 1% r_do]

for TE wave modes. The integrations in (15) and (16) can be performed
numerically and good accuracy is obtainable as will be demonstrated in

the next section.




4, Numerical Example

To demonstrate the validity of the point-matching method for determination
of the field distribution, power transfer, and the attenuation constant, it is assumed
that an electromagnetic wave is propagating inside a square waveguide in the TE]O
mode. The guide has a width of 2a and is placed with its center at the origin of
a rectangular coordinate system as illustrated in Fig. 2. Since the longitudinal

field component HZ is symmetrical with respect to the x-axis for TE. |, the sine

'
terms in (1) are omitted. The cutoff wave number calculated by (3) Js?ng six points
only on the upper half of the guide's cross~sectional contour (see Fig. 2) is 1.5716,
compared with the exact value of 1,5708, The expansion coefficients were
determined in terms of the coefficient A] which is equal to a pre-assigned value

of unity. The resulting wave function is therefore expressed in the following form:

3
beh= w0y ) cos@n-T) 0 (17)

with three-place accuracy. The disappearance of the even terms in (17) is not
surprising because HZ for TE]0 is antisymmetric with respect to the y-axis. The
series in (17) converges rapidly. It is observed that the accuracy of ¥ is estimated

by taking the ratio of the lowest neglected term to the first term, That is,
Jo(kr) / 3 (kr) <0.001

for the largest value of r which isJZa. It can therefore be concluded that the
wave function in (17) does represent the field distribution in the square guide
under consideration up to three-place accuracy. Takle T contains the values of
H_ as a function of position x for three different locations in the y-direction,

and compared with the exact solution

Hz =0.5 sin(m x/ 2a)



The power transported in the waveguide was calculated numerically
using (8) and (17), and the result was 0.1256 which is excellent when compared
with the exact value of 0,1250,

The attenuation constant is obtained by substituting the approximate wave

function (17) into (16) and performing numerical integrations. It is

(0 aZ /R ) = (0.994/20) JF/F_[1 +2.014 t_/h?] (18)

where Rsc = Rs\“:c/f ; the surface resistance at cutoff frequency, and ap
denotes the attenuation constant of the point matching solution. The exact

attenuation constant, a for a square guide of width 2a [Ramo and Whinney,

1944 ] is given by
- T/ 2.
(ae a ZO/RSC)—(1/2C) F/FC {1+2 (fc/f) ] (19)
The comparison of these two attenuation constants is shown in Fig. 3 over the

frequency range of (f/fc) =1 through 10, The validity of the attenuation

constant calculated by the point matching solutions is then verified.



5, Discussion

The poini-matching method offers a new and convenient method for solving
waveguide problems especially when the cross=sectional shapes of such guides are
not largely deviated from a circle, The theory has been verified by applying it
to well known problems, and it does give reasonably accurate results if a digital
computer is available. In Table 1 for example, the point-matching method yields
the field distribution in the square guide with excellent agreement with the exact
solution at y/a =0, and y/a =1, There is however, a slight deviation near the
middle region (y/a =0.5). From a mathematical point of view, the agreement
between the field distribution calculated by the approximate and exact approaches
is not surprising, since, by wave transformation [ Harrington, 1961 ]

sinx=2 % (_])n+]

n=1

J2n - (x) cos(2n-1) 0

The formulation of the attenuation constants (15) and (16) is proven correct
as seen by the results in Fig. 3, in addition to the agreement of the expressions for
TE]O of (18) and (19). It may also be noted that the formulas (15) and (16) agree
with those formulated by Gannet and Szekely [19607],

Since the integrals in (15) and (16) are frequency-independent, the
attenuation constants in the high frequency range increase with frequency for all
TM and most of TE modes. The attenuvation constant in the TE cuse is inversely

proportional to the frequency if and only if

f F(r_, 8)r_d8=0 (19)
C (]

However, this condition in general cannot be fulfilled exc"epf for TEno modes of
circular guides, Therefore, it is predicted thai a wide band of frequency of low
attenuation can be achieved if the cross-sectional shape of a uniform waveguide

is not largely deviated from a circle,
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Figure Captions

Fig. 1 (a) A waveguide with arbitrary cross section

and the relevant coordinate system.

(b) The angle o at point (rm , Gm) on the

cross-sectional contour,
Fig. 2 The square guide with the six chosen points.

Fig. 3 The attenuation constants of the square

waveguide.
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Table 1. The field distribution (H_) computed by the point-matching
method and compared ~ ©

with the exact solution.

n Yo 0 0.5 1 Exact
0.1 0.078217 0.078444 0.078194 0.078217
0.2 0.154508 0.154961 0.154470 0. 154508
0.3 | 0.226995 0.227672 0.226955 0.226995
0.4 | 0.293893 0.294789 0.293867 0.293892
0.5 0.353554 0.354664 0.353562 0.353553
0.6 0.404509 0.405825 |  0.404567 0.404508
0.7 | 0.445506 0.447013 0.445624 0.445503
0.8 0.475536 0.477215 0.475711 0.475528
0.9 | 0.493860 0.495689 0.494075 0.493844
1.0 | 0.500034 0.501979 0.500246 0.500000

.




